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PREFACE

This final report was submitted by the University of
Florida, under Contract No. AFOSR-87-0236. The program was
managed by Dr. Arje Nachman of AFOSR. The principle investigator
was Dr. David W. Mikolaitis of the Department of Aerospace
Engineering, Mechanics, and Engineering Science at the University
of Florida. This research was initiated in June, 1987 and
completed in June, 1988. This report vias written by Dr. David W.
Mikolaitis.

Accesion fFor
NTIS CRa&! !

CHCc 1Ay
U oo

[

Qb
Qo
ek
a1
-
o

e



ey

AFOSR-TR. 8 9- 0 0o

TABLE OF CONTENTS

Introduction

The Elements of Large Heat
Release Asymptotics

A Four-Step Model
Reaction Modeling
Governing Equations
The Equilibrium State

Phase Space Equations and
Perturbations to Equilibrium

The Special Case of Unit Lewis Numbers
The Reversible Zeldovich-Lid4n Model

Concluding Remarks on the
Example Problem

A New Similarity Solution for
Reacting Gas Flows

Continuing Work in LHRA

References

Appendix A: On the abrupt extinction
of premixed flames with Lewis numbers

less than one

Appendix B: High temperature extinction
of premixed flames

13

14

16

17

19

21

23

33



r——

"

i o

T

INTRODUCTION

The main thrust of mathamatical analysis of deflagration and
detoration waves since the early 19758's has been through the
application of activation energy asymptotics (AEA) as in
Buckmaster and Ludford (1982). While this approach is of great
utility in many problems of practical interest, there are also
many cases where the activation energy cannot be taken as large,
such as in hydrogen oxidation. There is little doubt that
hydrogen will be an important fuel in the coming decades since
the need for energy sources with high specific energy
(automobiles, aircraft, Space Shuttle, etc) will ke with us for
the foreseeable future and concerns, both real and imagined, over
the release of carbon dioxide into the environment are mounting.

With these concerns in mind, mathematical methods for the
study of combustion phenomena needed to be developed through the
application of large heat release asymptotics (LHRA). Previous
work in this area for deflagration waves is scant (Mikolaitis,
1986a, 1986b, 1987a) although similar i1deas have been used in the
analysis of well stirred reactors (Gray, 1973). 1In Mikolaitis
(1986a), the structure of the adiabatic, plane deflagration wave
with one step, irreversible kinetics is studied under the limit
of large heat release. In Mikolaitis (1986b), a similar analysis
is undertaken for the two-step Zeldovich-Lifddn model that
includes a chain branching mechanism and a termination step. The
motivation of this work was to show that the usual AEA analyses
of this problem do not result in a realistic flame structure over
the entire range of flame temperatures but ILHRA analyses do.

THE ELEMENTS OF LARGE HEAT RELEASE ASYMPTOTICS

Rates of reaction generally follow an Arrhenius rate of the

form
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rate = B (F]12[{0]1PT exp(-E,/RT)

where [F] and [0O] are the concentrations of species F and 0, T is
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the absolute temperature, R is the universal gas constant, B
the pre-exponential constant, a and b are the stoichiometric
integers (these need not be integers if this rate expression is a
model for a more complicated reaction mechanism), n is the
algebraic temperature dependence, and E; is the activation
energy. Ez/R has units of temperature and is called the
activation temperature.

In AEA it is assumed that E/R is very much greater than the
temperature of the reacting gases everywhere. A consequence of
this assumption is that reaction is confined to a thin sheet with
frozen reaction on one side and equilibrium on the other. The
diffusion of heat and mass, on the other hand, take place on a
much longer length scale.

In LHRA, E3/R is taken to be of the same order of magnitude
as the flame temperature but large compared to the reactant
supply temperature. The resulting flame structure in this limit
has reaction distributed on the same length scale as the
diffusion of mass and heat and so the reaction zone and preheat
zone of the flame are of similar thicknesses.

As a concrete example, let us analyze the structure of the
downstream far-field of an adiabatic, laminar premixed flame.

The adiabatic, laminar premixed flame problem involves the
search for a steady solution to a set of nonlinear ordinary
differential equations on a doubly infinite domain. Cool, fresh
reactants are supplied far upstream of the flame and hot, burned
gases in equilibrium exist far behind the flame. The mass flux
of material normal to the flame is a parameter in the set of
differential equations and is to be determined as part of the
solution. Determining the mass flux is usually the goal of the
analysis. Of course, finite differencing for the numerical
solution of the governing equations subject to boundary
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conditions on a doubly infinite domain is not a practical problem
and so the computational domain must be truncated. |

The typical computational approaches for the cold boundary
are to assume a zero reaction rate between x=-» and some position
x=a and integrate the resulting equations to arrive at boundary
conditions at x=a or simply to transfer the cold remote
conditions directly to x=a. Both of these approaches neglect the
“cold boundary difficulty". Since the incoming stream of
reactants is not in equilibrium (otherwise it would have no
chemical enthalpy that could be turned into heat), the incoming
stream must have a positive rate of reaction and so the
conditions at infinity are not a solution to the field equations
(the reaction term is positive but the convective and diffusive
terms must be zero and so cannot balance the reaction term). 1In
practice a steady solution appears to exist due to the fact that
real flames only propagate finite distances and the rate of
reaction in reactant stream is very small. This allows the flame
to reach the combustible mixture long before any appreciable
reaction takes place in the fresh mixture at the cool reactant
temperature. One of the triumphs of AEA was that it allowed a-
rational analysis of the steady flame problem without introducing
in an ad hoc manner any extraneous term in the reaction rate
expression. One simply realizes that the "steady" solution is
the leading order solution to an intrinsically unsteady problem.
Here we have generalized this idea through LHRA. It is not
necessary that the activation temperature be considered as large
compared to the flame temperature but only that the activation
temperature is large compared to the cool reactant temperature.
When viewed in this way, AEA is seen to be a limiting case of the
mcre general treatment through LHRA.

For the hot boundary it is typical to specify equilibrium
conditions at some position x=a+L where L is "sufficiently"
large. The sufficiency is usually tested by increasing L and
comparing the resulting value of the steady-state mass flux with
the previously calculated value. It is typical to consider a 2%




change as small.
Here we will show how an analysis of the downstream far-

field of a laminar adiabatic premixed flame can be accomplished
through a series of simple example problems that are of interest
in relation to several large activation energy analyses that have
appeared in the recent literature. The results of an analysis
such as this can be used to apply boundary conditions a finite
distance behind the flame consistent with the far-field
structure. This should ameliorate any errors introduced through
the truncation of the computational domain. It may also make it
possible to use a smaller computational domain in practice since
the boundary conditions derived from this analysis have the
correct approach to equilibrium built into them and so this
fairly slow process need not be reproduced in the finite
difference scheme.

There are no conceptual differences between the examples to
be investigated here and examples with complete chemical kinetics
and sophisticated multi-component transport models.

A FOUR-STEP MODEL

Changes in kinetic mechanism with flame temperature have
been invoked to explain certain phenomena peculiar to flame
propagation through very lean hydrogen mixtures (Peters and
Smooke, 1985). The Peters-Smooke four-step model in essence is a
chain branching mechanism, a product formation reaction, and a
reaction that consumes chain carriers and produces an inert
intermediate (chain termination). At sufficiently low
temperatures the chain termination mechanism dominates the chain
branching mechanism and effectively terminates the reaction by
eliminating all the active radicals. Peters and Smooke (1985)
analyzed the response of a premixed flame with this kinetic
mechanism to small aerodynamic straining (weak flame stretch)
under a fast recombination/large activation energy limit. Under

4



the influence of weak flame stretch, such premixed flames with
Lewis numbers less than one (such as lean hydrogen/air mixtures)
will experience a rise in temperature above the adiabatic flame
temperature. This then was used to explain how hydrogen/air
mixtures nominally below the lean limit can support cellular
flames and why the troughs of such rlames, where the flame
expariences positive flame stretch, are much brighter than the
crests (which may be extinguished) where the flame is compressed
and hence cooled.

Although this explanation is very appealing (and probably
correct for the most part) it leaves some questions unanswered.
First of all, an 0(1l) increase in flame temperature above the
adiabatic value is required to move the flame temperature of the
very lean hydrogen-air mixtures above the transition temperature.
This requires 0(1) flame stretch. The analysis of Peters and
Smooke only allowed weak flame stretch. 1In addition, HO; is not
inert. There are reaction paths, albe:t slow ones, through which
HO; can react to form more active radicals through an alternate
branching cycle involving the formation of hydrogen peroxide,
H,02. Previous analytical work in detonation wave structure
(Mikolaitis, 1987b) has shown that the existence of this
alternate branching cycle has an 0(1) effect on the length of the
induction zone of even stoichiometric hydrogen-air detonation
waves. It is well known that lean premixed hydrogen-air flames
show appreciable levels of hydrogen peroxide. It is also well
known that appreciable changes in flame speed occur if HOj
chemistry is ignored. For these reasons it is very likely that
HO3 chemistry plays a major role in low temperature hydrogen-air
premixed flames. Peters and Smooke's treatment assumes that the
slow chemistry of this species is infinitely so.

As a start of a more general analysis of this problem, we
will first introduce a four-step reaction scheme that has both a
high temperature and low temperature mechanism. Secondly we will
analyze the far field flame structure that results from this
mechanism in a general context that alliows 0(1) activation

5




energies (as opposed to restricting the validity of the analysis
to the large activation energy limit).

REACTION MODELING

As is well known from reaction vessels studies, the way in
which oxygen reacts with hydrogen at low temperatures is very
different from the way they react with each other at high
temperatures. The source of this change in kinetic mechanism is
the competition between the reactions H + O - O + OH and H + O3
+ M - HO; + M where M is a third body. The products of the first
reaction readily react with H; to form additional radicals while
HO; reacts with Hy to form H;0, (hydrogen peroxide). The
peroxide intermediate dissociates into two hydroxyl radicals
through a relatively slow, large activation temperature reaction.
These OH radicals then quickly react with Hy; to form additional
radicals.

Here we will study a simplified kinetic model that has the
following features: -

1) a chain branching mechanism that dominates at high
temperatures,

2) a chain branching mechanism that dominates at low
temperatures,
and

3) a product formation/termination reaction.

This can be most easily accomplished through the four-step

mechanism
A+X=X+X (1)
X+X=P+P (2)
A+ X=Y+ Y (3)
X+Y¥Y=X+ X. (4)

A represents the major reactants, X represents the highly

6
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reactive radicals, Y represents the relatively inert
intermediates and P represents the final product. Forward
reaction (1) is a chain branching reaction, (2) is the product
formation/termination step, (3) competes with (1), and (3) and
(4) taken together ((3) + 2 x (4)) is another chain branching
mechanism. The set of forward reactions (1-2) forms the
Zeldovich-Lifnan mechanism that has been extensively studied in
recent years (Liaan, 1971, Seshadri and Peters, 1983, Tam and
Ludford, 1984, 1985, Joulin, et al, 1985, Mikolaitis, 1986b).
Numerical subscripts will refer to the reaction numbers 1 to
4. Positive subscripts will refer to the forward reactions and
negative subscripts will refer to the reverse reactions. All
reaction rates will be assumed to be proportional to the mass
fraction of each reactant and have a general temperature
dependence. For example, the rate of reaction for the reverse
reaction (1) is xzf_l(T). Of course, Arrhenius reaction rates

are a special case of this more general form.

GOVERNING EQUATIONS -

Under the assumption of calorifically perfect gases with
constant transport properties and also assuming low Mach numbers,
the non-dimensional governing equations describing a one-
dimensional reacting front with the aforementioned four-step

chemistry are

MT' = T" + qp (AXf1-X2f-1) + g2 (X2£5-P2f_3)
+ Q3 (AX£3-Y2f_3) + qq(XYE4-X2f_4) (5)

MA' = i; A" - (AXfy-X2f_q) - (AXf3-Y2£f_3) (6)

MX' = %; X" + (AXf1-X2f_1) - 2(X2£5-P2f_5)

- (AXf3-Y2f_3) + (XY£4-X2f_4) (%)
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MY' = T Y" + 2(AXf3-Y2f-3) - (XYf4-X2f~4) (8)

3

P-1-4a4~X-YX. (9)

M is the mass flux normal to the flame (constant); T is the
temperature; A, X, Y and P are the mass fractions of species A,
X, Y and P respectively; Lp, Lx and Ly are the appropriate Lewis
numbers; and the g's are the heat releases. Since the heat
release for species A being converted into species B must be
independent of reaction path, we have the additional relationship

d4 = (91 - 493)/2. (10)

The boundary conditions far behind the flame are that the mixture
is in equilibrium.

THE EQUILIBRIUM STATE

For a given final temperature, T}, where the subscript b -
denotes the burned state, the equilibrium state is very easily
ascertained in closed form. If we define

2 _ £,  £.f_

=13 3

-fq4 + , fq4 + 8(f_, + ) ( )
c = J 4 o R MRS Rk (11)
Af
b L
£.+E,
and
K= (f_, +a £_)/(f + £3) (12)

where the reaction rate functions are evaluated at the burned
temperature, Tp, then

Ap = K Xp, (13)

WeN
v




Yp = C Xp, (14)
and Xp satisfies the quadratic

Xp2 (K +£_1+2f5~2 (1+C+K) 2£_3+Kf3-C2f_3-Cf4+f4)
+ 4Xp(1+C+K)foy =-2f., = O. (15)

The state of the burned gases is linked to the state of the
fresh reactants through the total enthalpy. Multiplying (6) by
(91+492/2), (7; by q92/2, and (8) by (4i*-gaz-q3)/2 and adding these
resnlts to (5) yields after integration and the application of

boundary conditions
Te + (q1+92/2)Af + q2Xf/2 + (d1+q2-qd3)¥e/2 = (16)
Th + (q1+492/2)Ap + d2Xp/2 + (q1+q2-93)Yp/2

where the subscript f denotes the remote, fresh state.
Specification of the cool, fresh reactant state fixes the
constant in (16) and hence substitution of (13-15) into (16)
yields a single equation for the burned gas temperature.

PHASE SPACE EQUATIONS AND PERTURBATIONS TO EQUILIBRIUM

The system of equations (5-8) are autonomous and hence the
independent variable x can be replaced with one of the dependent
variables. In most cases T can be used without difficulty. The
system is thereky reduced in order by one and the domain of the
adiabatic plane flame problem goes from being doubly infinite (-
o<x<+=) to finite (Tg<T<Tp where T¢f is the temperature of the
cool, fresh reactants). Letting z = T', the governing equations
become

el
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Mz = z 32 + qy(AX£1-X2£_1) + dp(X2£5-P2E.))

+ g3 (AKE3-Y2£_3) + Qg (Xifq-%K2f_4) (17)
Mz %% = %; z g; (z%%) - (AXF1-X2f.;) - (AX3-Y2f. 3 (18)
ax _ 1 _d . dX —x2f .y - 2f -p2¢-
Mz gr = Ty % ar (Zap) t (AXE1-XPfop) - 2(X2£5-P2f-y)
- (AXf3-Y2f_3) + (XYE4-X2f_4) (19)
ay _ 1 d dy . ,
Mz §7 = Iy % at (zgp) + 2(AXf3~Y2f_3) - (XYf£4-X9f_4) (20)

along with (9). One of these equations may be replaced by an
enthalpy relation. When T=T}, equilibrium holds so that

A(Tp) = Ap, X(Tp) = Xp, ¥(Tp) = Yp, (21)

and
0. (22)

z(Tp)

The price that one pays when converting a problem on an .
infinite domain to one on a finite domain is that now one has a
boundary value problem that is singular at both endpoints. Here
we will be numerically integrating the governing equations (17-
20) from one end point toward the other. It is therefore
necessary to analyze the local structure of the singularity in '
order to specify proper initial cocnditions slightly away from the
singular point.

Perturbations to the hot singular point can be analyzed

through the expansions
z=¢¢, A=Ap+el , X=Xp+tex, Y=Yp+eyp, T=Tp+er, e<<1. (23)
and the boundary conditions (21-22) become

¢ (0)= (0)=x(0)=¢(0)=0. (24)

io0
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The non-linear limit equations resulting from the expansions (23)
are easily solved subject to the initial conditions (24). The
system admits a solution of the form

$ =ar, y=br, x=cr, ¢=gr (25)

that satisfy (24) if a, b, ¢ and g satisfy the algebraic

relationships
Mg = g2 + q1A; + Q2R3 + Q3A3 + QqAg (26)
=31 42
Mga = L. 9°a - Ay - Ay (27)
A
=1 42
Mgb = 71— g%b + 2A3 - A4 (28)
Y
Mgc = %; g2c + Ay - 2A5 - A3 + A4 (29)
where
Ay = aXpfy + Apcfy + ApXpf] - 2Xpcf-; - Xp2fl, (30)
Ay = 2Xpcfy + Xp2f3 - (1l-Ap-Xp-Yp. 2£l,
+ 2(1-Ap-Xp-Yp) (at+b+c) £_5 (31)
A3 = Apcf3 + Xpaf3y + ApXpfi - 2Ypbf_3 - Yp2fl, (32)
Ay = Ypcfy + Xpbfy + XpYpfl - 2Xpcfog - Xp2fly,. (33)

The temperature dependency functions (fj functions) and their
derivatives are tc be evaluated at the burned gas temperature Ty.
The derivative of z with respect to T is identical with
T"/T'. Since T approaches a constant, Tp, as x goes to infinity,
T"/T' is negative for large values of x. This implies that dz/dT
must be negative in the neighborhood of T, and so g cannot be

positive.
A solution to this system of algebraic equations can be

11
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found with g=0 and a, b and c satisfying a set of three linear
algebraic equations whose solution in closed form is easily
accomplished. The implication of g=0 in the neighborhood of T=Tp
is that the conditions of the burned gas far behind the flame is
dominated solely by chemical reaction with convection and
conduction/diffusion playing no role. This spatially homogeneous
solution also corresponds to the final approach to equilibrium of
a quiescent gas in an adiabatic enclosure. Of the multiple
solutions to the set (26-29), this is not the appropriate choice
as can be easily determined.

Letting a=qy+d3/2, B=42/2, y=(d1+d2-d3)/2, it is easily
shown that

a dA B.ﬂ+1§l)+c (34)

M(T + a2 + BX + ¢Y) = 2(1 + EAEE + LydT LydT

is true globally where C is a constant that can be evaluated at
either the hot or cold singular point. If (34) is differentiated
with respect to T and evaluated at T=Tp with the further
restriction that dz/dT = 0 at that point (so that g=0), then

1+ aa + Bc + yb = O. (35)

This constraint is inconsistent with the solution to the three
linear algebraic equations for a, b and ¢, i.e. (27-29) with g=0,
unless the three Lewis numbers are all exactly one. The case
where all the Lewis numbers are unity will be discussed later.
Therefore, although there is a solution for g=0, that solution
viclates a global constraint and hence is of no interest in this
problem. We shall now consider only solutions with g strictly
less than zero.

Solutions to (26-29) with g<0 can be found numerically. The
computational difficulty is significantly reduced through the

derivation of the auxiliary equation
g - M(l + g3 + Bc + ‘1b) (36)
1+ (aa/Lp) +(8c/Ly)+(yb/Ly)

12




to be used in place of one of the original equations. Through
the use of this equation not only is the unwanted root with g=0
avoided, the permissible solution space in the abc space is
easily located between the planes where the numerator and the
denominator of (36) are zero. Since in practice the Lewis
numbers Lp, Ly and Ly can be quite close to one, it is clear that
the permissible solution space can become two very narrow wedges.
In such situations, knowledge of these bounds on the solution
space is critical in determining a suitable "first guess" for
numerical root finding on this system of non-linear algebraic

equations.

THE SPECIAL CASE OF UNIT LEWIS NUMBERS

When all the Lewis numbers are identically one, there is a
further reduction in the complexity of the problem. Equation

(34) can be integrated once again to give

T + aA + X + vY¥Y = constant (37)
so that
dA ax a¥ _
1 +a aT + 8 ar F T a1 = 0. (38)

We therefore now know one of the a,b,c's explicitly in terms of
the other two. Furthermore, g can now be found in terms of two
13
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of the a,b,c's through the quadratic solution of (26), that is
g = (M~ /M2-4(2A3q4))/2; (29)

where the negative root is taken as the only possible way to

generate a negative value of g.

THE REVERSIBLE ZELDOVICH-LINAN MECHANISM

A subset of the reaction mechanism (1-4) consisting of the
forward reactions 1 and 2 has received considerable attention
through the years (Zeldovich, 1948, Lifnd4n, 1971, Seshadri and
Peters, 1983, Tam and Ludford, 1984, 1985, Joulin et al, 1985,
Mikolaitis, 1986b). If the alternate branching mechanism is very
slow compared to the main chain branching mechanism and it is
found that there is negligible amounts of Y at equilibrium, then
the low temperature mechanism (3-4) can be ignored. This is the
typical case when the flame temperature is high. Here we will
analyze the two-step mechanism (1-2) where each reaction is
reversible in order to take into account equilibrium dissociation
of the product. This is not an element of the earlier analyses
of this mechanism.

The equilibrium state as a function of burned gas
temperature is easily determined to be

= 1 = = - -

where the temperature dependency functions, fj, are evaluated at
the burned gas temperature T}. Expanding A, X and T in the
neighborhood of the equilibrium point through

A=Ap +t ¢, X=Xp + ex, T=Tp + €r, 2 = ¢f (41)

leads to a set of nonlinear ordinary differential equations

14




subject to the initial conditions

—
£
8]

~

§ (r=0)=y (r=0)=¢ (r=0)=0.

This set of nonlinear differential e p:-+ions admit soclutions of

the form
§ =ar, x=cr, ¢ =gr (43)

if a, c and g satisfy the algebraic equations

Mg = g2 + q1By + q2B3 (44)
Maa = 1- g2
ga = ga - B; (45)
La
Mgc = 1= g2c + By - 2 By (46)
X
where
By = aXpfy + Apcf) + ApXpf1' - 2Xpcfoy - Xp2f_q' (47)

and
By = Xpcfy + Xp2fy' + 2(1-Ap-Xp) (a+c) f_s
-(1-Ap-Xp) 2£_5"'. (48)
These solutions also satisfy the initial conditions (42). As
before, there is a solution to this set of equations with g=0,
but again this solution is not appropriate. 1In order to avoid

this unwanted solution if numerical root finding is used it is
advantageous to rearrange (44-46) to arrive at

- M(l+aat+gec)
9 = l+ea/Lp+fc/Ly (49)

provided that not both Lp and Ly are unity.
If both Lewis numbers are unity then an exact solution with
physically sensible behavior is easily achieved. 1In that case a

15
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and ¢ are related through
1 + aa + gc = 0. (50)

{(45) is then divided by a and subtracted from (44). Elimination
of c from the resultant yields a quadratic in a.

CONCLUDING REMARKS ON THE EXAMPLE PROBLEM

The approach to equilibrium behind the adiabatic premixed
flame is a very slow process that typically takes place on a long
length scale compared to the primary reaction zone thickness and
the heat conduction - major species diffusion length scale. Here
we have analyzed the structure of the approach to equilibrium
behind a premixed flame front for a four step reaction model.

The simultaneous non-linear ordinary differential equations that
describe the process can be solved exactly up to a set of
constant coefficients. The required coefficients are found
through a set of simultaneous algebraic equations that can be -
solved numerically.

The mathematical algorithm used in this example problem can
also be used in the general context of a complete chemical
kinetic mechanism with variable transport coefficients. We are
currently investigating the ozone decomposition flame as an
example problem. Through such a solution the boundary conditions
an infinite distance behind the reacting front can be brought to
a finite distance behind the reacting front without a substantial
loss of accuracy. It is also possible to reduce the
computational Aomain for the calculaticn of an adiabatic planc
premixed flame structure significantly because the long approach
to equilibrium will be known analytically and need no longer be
resolved numerically.
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A NEW SIMILARITY SOLUTION FOR REACTING GAS FLOWS

In the AEA analysis of premixed flames the analog to the
stagnation point flow similarity solution is very similar to the
non-reacting stagnation point flow in that the gas velocities at
infinity are singular. Since this is the case, the applicability
of the analysis is restricted to the boundary layer applicaticns
where the flame is restricted to be close to the stagnation plane
even though the solution is a solution of the full Navier-Stokes
equations.

Under the limit of LHRA, this is no longer the case.
Solutions for reacting opposed flow are found where the velocity
at infinity is finite and uniform without slip as in boundary
conditions for flow exiting a porous plug. This means that the
realistic boundary conditions are met for the full problem and
restriction to a boundary layer solution is not necessary. A
copy of the page proofs of an article on this solution is
included as Appendix A.

Why is the character of the solution different in the limit
of large heat release? The essential difference between the two
solutions is that in the AEA stagnation point flow type solution
there is a quadratic variation in pressure transverse to the
flame whereas in the LHRA solution the transverse pressure
gradient is required to be zero to leading order. There is a
mathematical argument to show that this must be true, but a non-
rigorous physical argument can be made that is more revealing.

In the study of gaseous bubbles rising through liquids,
where there is a great difference betweén the density of the
gaseous phase and the liquid phase, the density ratio between the
liquid and gas phases can be approximated by infinity (i.e., zero
density for the gas phase to leading order). Under these
circumstances free streamline theory can be applied and in this
theory the material surface separating the high momentum outer
flow of the liquid phase from the stagnant (to leading order)
wake fluid in the gaseous phase is a surface of constant

17




pressure. In the LHRA analysis of opposed flow we have a very
similar situation where the flame plays a role analogous to that
played by the material surface in free streamline theory. It
should therefore not be surprising that LHRA predicts zero
transverse pressure gradient and low momentum far behind the
flame.

The LHRA analysis also predicts some very interesting
behavior that cannot be predicted through AEA. It is well known
that when premixed flames with Lewis numbers less than one are
positively stretch, the flame temperature rises. If adiabatic
conditions are enforced far behind the flame, the AEA analysis of
such a stretched premixed flame would never predict extinction
and the flame temperature would continuocusly rise with increasing
stretch. If conductive heat loss to the gases far behind the
flame is allowed by specifying a low temperature for the remote,
burned products, then as the flame stretch is increased the flame
temperature will eventually fall (but only after the flame has
retreated far into the opposed flow) and the flame structure has
become quite diffuse. This mathematical behavior has been
interpreted as extinction even though mathematical flame
structures still exist. In LHRA, a new extinction behavior is
found that is very easy to understand and remarkable in that it
at first seems counter-intuitive: Flames can extinguish by
becoming too hot! The physics of this mechanism is very simple.
In Arrhenius kinetics the rate of reaction has a temperature
dependence that goes monotonically from 0 to a positive constant
as the temperature goes from zero to infinity and the approach to
zero is through exponentially small functions. The rate of
reaction is proportional to this quantity times the concentration
of the reactants. These concentration go monotonically from
infinity to zero as the temperature goes from 0 to infinity and
the approach to infinite concentrations is through algebraically
large functions. This means that the rate of reaction is zero
for both 0 and infinite temperature and finite and positive in
between. The rate of reaction therefore has a maximum at some

18




well defined temperature. The LHRA analysis of the far-field of
stretched premixed flames shows that a necessary condition for
flames to =xist is that the flame temperature is at or below the
temperature that gives the maximum reaction rate. Since positive
flame stretch increases the flame temperature in flames with
Lewis numbers less than one, an upper bound on the flame stretch
that such a flame can endure is found.

It should be pointed out that the similarity solution given
in Appendix A is a much closer analog to experiment than the
stagnation point flow solutions whenever the flame is away from

the stagnation plane.

CONTINUING WORK IN LHRA

In the short term, work is continuing in LHRA along two
fronts: the analysis of ozone decomposition flames and the
generation of other premixed flame structures with multi-step
kinetics. The ozone flame is a particularly attractive example
problem because it has been studied through conventional )
numerical approaches (Heimerl and Coffee, 1980) and through
conventional AEA methods (Rogg and Wichman, 1985, amoung others).
The results of this analysis (undertaken as part of a Master's

program by a graduate student at the University of Florida,
Department of Aerospace Engineering, Mechanics and Engineering -
Science) should be more accurate than both the numerical
solutions where 2% convergence was deemed adequate and the AEA
solutions where reaction is mathematically restricted to a much
thinner region than is seen in practice.

In the long term, it is hoped that this research will result
in faster computing methods for the prediction of flame
structures for both stretched and unstretched premixed flames
through the generalization to complete chemical kineteics of the
mathematical results generated so far. It is envisioned that
this process can be completely automated so that the user need
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simply enter the kinetic scheme that is to be used and the
program will automatically construct the far-field solution and
so forth.

Ancther application of LKRA is in thne study of diffusion
flames. This will require a different methodology because the
temperature is not monotonic through the flame structure. There
are other variables that are, however, and so this is not an

insurmountable problem.
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Abstract—Huere we have analyzed the governing equations of reacting low Mach aumber flow (or plane
premived flame structures in non-uimform flow lields given that the activanon temperature of the mistare
1s large comparcd 1o the temperature of the remaote reactants. An extinction mechanism is uncovered for
flames with Luwss numbers fess than one that cunnat be found through the use of activation energy
assmptotics, a ot where the actination waperituee of the musture is farge compared to the burned gas
emperature.

INTRODUCTION

A central problem in combustion theory is to understand the influence of non-
uniform flows on burning rate. A particularly simple model problem that has been
extensively studied through the use of activation encrgy asymptotics (AEA) is the
premixed flame in an opposed flow with 4 — B irreversible kinetics. Analysis of this
problem have been performed under the constant density approximation (Buckmaste,
1979. and Buckmaster aund Mikolaitis. 1982) and with tull luid mechanical coupling
under a boundary layer approximation (Libby and Williams. 1982, 1983. 1984. and
Libby. Lifan. and Williams. 1983). Nonc of thesc studies have revealed an abrupt
extinction mechanism for adiabatic premixed flames with Lewis numbers sufficiently
less than one.

Here we will perform an analysis of the premixed flame in an opposed flow without
making a boundary layer approximation or assuming that the activation energy is
large. All we will assume is that the activation temperature is large compared to the
temperature of the cool remote reactants and that the burned gas temperature is on
the order of magnitude of the activation temperature. In this way the concept of an
adiabatic flame speed is retained by making the reaction rate of the cool reactants
exponentially small compared to the reaction rate in the flume itself. Reaction will no
longer confined to a thin sheet. however. Instead, reaction will be distributed on a
length scale comparable to the length scale of the temperature field. This has proven
to be a more realistic (tame structure for relatively hot ozone flames {Mikolaitis, 1987)
and in all likelihood will apply to many other situations.

This is also in accord with the results of Cotfee, Kotlar. and Milter (1984) who have
studied the overall reaction concept as applied to 50% ozone-30% diatomic oxygen.
40% hydrogen-60% air, and stoichiometric methane-air premixed flames. At nomi-
nal laboratory conditions for the state of the cool reactants (300 K and 1 atmosphere).
the global activation temperatures are 3974 K. 3271, and 15680K with burned gas
temperatures of 1943 K, 2215K, and 2232 K. respectively. These give burned gas
temperature 10 activation temperature ratios of 0.489, 0.677. and 0.143 lor 50%
ozone-50% air. 40% hydrogen-60% air, and stoichiometric methane-air premixed
flames. Such numbers will be considered as O(1). The corresponding ratios of cool
reactant temperatures to the activation temperature are 3.0755. 0.0917. and 0.0191.
These will be considered as small.
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We will non-dimensionalize our goverming eyuations i the same manner as an
Mhobatis (1987 where i smular problem was analvzed ander the restrction of ung
[ ewes number As Lewis number effects have proven o be very smportant in the A LA
analyses of Tames with flow non-uniformities, it wouild seern likely that the same wouold
appls here Simee we are interested nfow speed detlagration waves, i low Maech number
approximation o appropriate so that the resaivmg steady two dimenicna governing:

L .
g ' Aoudx + Clovyev = 0 M

Conl1 éx + ApuTViev = VT 4 Qol"Yexpt- 4'T) i

Y)Y ox + C@uY)iéy = LULVY = oT Y exp o= jT) 3

; aucwéx + puduldy = —30pldx + P(Vu + (X(Fuicx + ‘1"/‘.‘-")/;'\')/3;;* @
v X+ oucrlCr = =3plér + PIVe + (T Sy + Cuicn ,‘-',-),'3‘,\./‘ )

o = 1T (6)
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for continuily, energy, specics conservation. v and v momentum. and equation of
stuate. We have assumed in the derivation of these equations calorifically perfect guses
of equal specific heats and constant transport properties. The parameters L and P are
the Lewis number and the Prandtl number respectively. T is the temperature non-
dimensionalized with respect to the activation temperature of the reaction. v and v are
the x and v components of velocity. p is the non-dimensionalized variation in pressure
F about the ambient combustion pressure, and Y is the mass fraction of reactants.
Lengths have been scaled so that the coetficient of the Laplacian of T is unity and
velocities have been scaled so that the coeflicient of the reaction term is unity. Q is the
non-dimensional heat release. The details of the non-dimensionalization can be found
in Mikolaitis (1987).
Plane flames where the x-uxis is normal to the flame and the y-axis is parallel 1o the
flame (see Figure 1) will require that

el

L T = T(x). Y = Y(x). u = u(x). (7)
s The equation of state immediately gives ¢ = o(x) so that we can define

M= olx)ulx) = M) (8)
Continuity now requires that
{ v = —y T dM/dv. 9)

This x momentum equation (4) now shows that ¢p/éx is a function of x only. This then
implies that

&Eplixéy = 0. (10)

Substituting the right hand side of (9) for = and Af for gu in the ¥ momentum
Fa. (5) gives

apliy = = v(PAN(TdMdx)ds — MdTdMdx)dy + T(dMdxy). (1)
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FIGURE 1 Sketch of the flow ficld and coordinaie system.
Applying the condition (10) results in
Pd (T dMd)d — MA(TdMdx)y dx + T(dM dxy = const (12

so in general onc can cxpect quadratic variations in pressure in the v direction
(transverse o the Hame) for plane flames as long as the constant in (12) is non-zero.
Later we will demonstrate that this quadratic variation is inconsistent with the large
heat release imit so that the constant must be zero.

The energy and specics conservation equations (2-3) become

M dT/dx & Tlde + QT Yexp (—=1,;T) (13)

i

MdY/dx (/L)d*Yidw -~ T"' Yexp(=1/T). (14)

We now have a svstem of 3 non-linear ordinary differential equations to solve given
by (12-14).

LARGE HEAT RELEASE ASYMPTOTICS

The central notion of the approximation scheme that we will be using it that the
temperature of the remote upstream reactants is small compared to the activation
temperature of the reaction. Since the activation temperature is also the temperature
scale. this then requires that the remote upstream temperature is zero to leading order.
Since the remote burned state must be a singular point of the system Lhe reaction rate
there must be zero. This can be accomplished by taking gases fur downstream as fully
burned. In order that the **regular™ solution is found. we wiil specify that far upstream
of the flame the balance in the energy cquation is between conduction and convection
with reaction being much smaller. This will prevent any “fast™ deflagration wave
soiutions (see Kassoy, 1985, for example. for a discussion of fast deflugration waves,
that is deflagration waves where the remole upstream balance in the cold reactant gas
stream is between convection and reaction) from appearing. As a result. some of the
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boundary conditions are

TC-r) = OYC ) =Y Y+ 7) = O.dldy =0 an v - + v

. . (s
(T de )y (MdTdy) = 1 as A — — 7.

Before we discuss the rest of the boundary conditions necessary 10 produce a uniquc
solution, we will investigate how the boundary conditions used so far influence the
choice of integration constant in (12). As v — — %, the mass flux Af must approach
(d” Tidv ) (T dx) and so for large negauve ©

P(T(TITYY — (T(T"[TYY(TT°) + TUT"/T'Yy =~ K. (16)

where “ denotes derivatives with respect 1o x and K is the constant of integration in
(12). If any of the three terms approuaches a non-zero constant as x — — 7, then alt
the terms become of the same order of magnitude and T grows quartically. In fact.
an exact solution to (16) is given by T = Ax*/(27 — 6P). From this we can get the
rest of the unknowns (u. v, p. g) for an exact solution to a viscous. conducting
incompressible low problem.

The only other way to have the left hand side approach a constant is if two of the
terms become very large but their sum approaches a constant. This becomes impos-
sible because if two of the terms become of the sume order of magnitude. then it is
casily determined that 7 must attain quartic growth as before. This then implies that
the only permissible value of the constant is zero and so now our set of three
governing equations is (12-14) with the constant for equation (12) being 0. This
condition implics that there is no transverse pressure gradient.

The physical reason why there cannot be a non-zero transverse pressure gradi-
ent is that the density ratio of the hot product gas stream to the cold rcactant
stream becomes infinite in the large heat release imit. Therefore the interface between
the hot and cold gases behaves in a manner similar to the liquid-gas interface
of a rising bubble (i.c.. free streamline theory). A practical combustion problem
that may have this character is a premixed lame attached to a bluff body. In that
configuration the flume sheet roughly separates cold. high momentum fluid in
the free stream from hot. low momentum fluid in the recirculation zone. Since
the density difference between the freestream and the wake can be large. sav a
factor of 7 or 8. the separation streamline might be profitably considered as a frec
streamline. Since the wake gasses are so slowly moving in the recirculation zone
of an attached premixed flame. it may be better to analyze the flame structure
through the limit given here rather than through a boundary layer analvsis where
the speed of the remote reactants is taken 10 be very much larger than the local
flame speed.

THE REMOTE BURNED STATE
An analysis of appropriate to the remote burned state can also be performed. In this
case we will transform the problem into 2 phase space with T as the independent

variable through the definition

2= dT dx . (n
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to arrive ab the set ol equattions
P dzdod s dM odl) dU).dl - M= dil: dM AT ) dT + 'I.::(l/." «IT)’ = 0 (18
M o= dydl + QT " Yexp(=1iT): (1)
MAYAD = (LLY dzdYdTydT — T " Yexp(=1 7).z (2
and the partial set of boundary conditions (15) become
Yy = Y ,. Y1) = 0. 20) = 0. AT, = 0,

(dz{dT)M -1 as T =0 21
where 7, is the final temperature of the burned gases. 7, is to be determined as pan
of the solution.

We will now look for solutions to this system in the ncighborhood of the point
T=T.Y=0:=0.M = M,through the lcading order expansions

T =T, +et. 2 =46l ¥ =2c¢Y, M =M +0om el dgl (2

appropriate to this problem.
The system governing the behavior in the far ficld is

didi = My— QT 'rexpt=1T) (23)
didvidnydt = L(Mudv.d: + T'" ' vexsp(=1.T,)) 24)

d'mdt = = 3Ndlidefd> mide?)[S — (dZide) (dm d=) = (dF e ) dmijdz) S
+ My(d: de)(dmjde)il + (dPmid)y ) P 25)

with initial conditions
a0) = ¥(0) = m0) = 0. (26)

The general solution to this underdetermined non-linear system is

; = At 7N
yo= Bt (28)
m = Cli|f (29)
where
A = (LM, - (U'Mi +4L:n 2 30
B = Ml - L)4Q7 - LQ (31)
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T = M, ar (1)

vo= A7 Texp (= 1/T;) (33)

fi

and C is arbiirary. Casting the solution back into the original variables we then get
the approximate solution

:x MT - T)) (34)
Y = 8(T-T) (35)
M= M, + (T, -T) (36)
if we take
§ = i (37)

A number of points can be addressed with this solution for the far field structure,
If the solution for the perturbation to the mass flux, »1. is to make any sense we must
have 2 > 0 or C = 0. In the case where C = 0 we can take & as an arbitrarily small
scale compared to &. This then implies that the variation in M within the ¢ neighbor-
hood of T = T,isidentically zero and so every derivative of M with respect to 7 must
vanish at T = T,. We therefore know that .\f must be identically zero in some finite
neighborhood of T = T,orelse it has an essentially singularityat T = 7,. Numerical
calculations on the full Eqs. (18-20) indicate the former and furthermore show that
M is identically constant from T = 0 to T = 7T,. Of course the boundary conditions
at T = 0 are not met in general, but for a specific choice of M, they are. That choice
is the adiabatic burning rate.

Since our interest is in the effects of flow non-uniformities. and therefore varying
M. attention must be placed on the case where C # 0. When this happens we must
conclude that M, is negative in order that x is positive. The reason for this is that as
X — oo either T is positive and T~ is negative of T is negative and T is positive if
T approaches a constant value. This implies that dz/dT (which is the same as T°/T")
must be negative at T = T,. We therefore know that A is ncgative. Of course. the
Prandt! number P is positive and hence if 2 is to be positive then M, must be negative.
This result is not too surprising. A more interesting conclusion can be reached once
the condition of non-negative mass fractions is applied. In the far field the imposition
of non-negative mass fraction requires that 8 < 0. This will be true for any negative
value of M, if L 2 1 but will not be true in general if L < |. When L < 1 a critical
mass flux + % given by

Mo = =JLi1 ~ L) (38)
can be uncovered. B vanishes at this particular vatuc of M,,. If M, is smaller than M.,
then 8 as defined by (31) becomes positive and hence the mass fraction of reactant
becomes negative in the far ficld. Since this is impossible. we must have

when L < 1.
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The incquality (39) can be rewrttten in the form
TP texp(-UT) 2 (0~ Ly ML 20, (30)

if n > 1. then the loft hand side of (40) s 4 moan onicaly ncreasiag function of
I, that increases without bound. Fora given value of 8, and Lewis number less thun
one. a minimum possible burned pas temperaiure 15 predicted. This sttsation is of
limited interest because it corresponds 1o a reaction rate that iacreases without bound
with temperature. This is hordly realistic in that tor sathaently high temperatures the
fraction of collisions that have the requisitc amount of energy approaches one white
the density of the reactants approaches zero, We therefore know that the rawe of
reaction must go 10 zero as the temperature goes to infinity.

In the case where n = 1, again 2 minimum burned gas temperature is predicted but
the left hand side of (40) no longer grows without bound. Since the left hand side
of {40) is bounded between 0 and | for all positive vaiues of T,. A is bounded
between 0 and L;(1 — L). In this case a minimum value of M, is predicted. namely
= JL/(1 = L). that is attained at an infinite flame temperature. At any finite flame
temperature the value of M, must be higher. Again this case is of limited interest
becausc now the rate of reaction goes to a positive constant instead of zero as the
temperature goes to infinity.

When n < | the left hand side of (40) is no longer monotone but achieves a
maximum value at a finite temperaiure. This again puis a bound on W, but now the
minimum value is achieved at a finite temperature.

This predicts @ maximum possible amount of blowing from behind. that is a
minimum possible valuc of M,,. if the Lewis number is less than one and the reaction
constant n is less than or equal 1o one so that the rate of reaction approaches zero as
the temperature becomes infinite. This lower bound on .M, is surprisingly independent
of the composition of the fresh mixture. The maximum possible value of {M,} is
attained at a final burned gas temperature of 1/(1 — n) and has a value of

IMylms = LI —#)""exp(n — D:(1 = L) 31)

This means that as the blowing from behind the flame is increased. extinction
must occur at or before the value of the blowing given by (41) if both L and n
are less than one.

The physical reason for the restriction on » is that when # is less than one, the
reaction rate eventually begins to fall as the temperature rises. For large enough
temperatures the drop in overall concentration with rising temperature overwhelms
the increase in the concentration of sufficiently energetic molecults as represented by
the exponential term. This behavior can appear for LeVjs numbers less than one
because the blowing from behind increases the temperature of the mixture, a fact
that has been confirmed through numericai integration of the governing cquations.
Sufficiently large amounts of blowing can conceivably raise the temperature to the
point where the reaction rate begins to fall due to a sufficiently lurge drop in density.
This effect is the reason for the restriction (41). This 1ype of extinction mechanism
cannot be studied through the use of AEA since it can only occur when the final gas
temperatures arc of the same order ol magnitude as the activation temperature.

Here we have taken the mass flux of the remote opposed flow to be finite and yet
in the AEA/boundary laycr solutions the magnitude of the mass flux appears to grow
without bound. There is no inconsistency. however. In the AEA solutions the velocity
scile is the adiabatic flame speed whereas here we have used a velocity scale that
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normaitzes the cocilicient of the rcaction term. The AEA soluuons, where the iempera-
re of the remote reactants i small, can he recovered by restnicung 7, to be smalt and
taking A, to be large compared to the adiabatic burning rate. This is possible cven
though the crincal value of M, approaches zero as T, goes 1o zero because the criticul
mass flux is O( (7, ) whereas the adiabatic burning rate is O(,(7;), T,) and so the
critical mass flux is much farger.

Arrhenius kinetics arc not an essential feature fo this extinction mechanism. If we
use a reaction rate temperature dependence of the form f(T) where f(0) = 0,
(T)y = 0asT — = . /(T) > 0for T > 0, and (T ) continuous then we cun derive
the result that

M; < LJ(THIY - L) (42)

when the Lewis number L is less than one. These restrictions on /(T') are all physically
realistic in that we expect essentially zero rate of reaction for small temperatures,
diminishing rate of reuction for very high temperatures since the fraction of sufficiently
energetic molecules can become no higher than one and the concentration ot reactants
must decreasc with temperature, and the rate of reaction must always be positive.
Since the physically realistic restrictions imposed on f(T) imply that f/(T) has a
maximum value. we can therefore conclude that there is a maximum smount of
blowing that a flame with Lewis number less than one can withstand and this
maximum is no greater than that predicted by (42).

Although an extinction mechanism like this is predicted mathematically, the
question remains as 1o whether or not it is physically accessible. In addition, it is
possible that the failure of a physically realistic flat-flame similarity solution to exist
only indicates that the solution bifurcates or jumps to a nonplanar solution. A
complete answer 10 these questions would require the study of a complete reaction
mechanism, large scale numerical simulations. developing appropriate existence and
uniqueness theorems. experimental investigation. or some combination. Such a task
is bevond the scope of this work.

CONCLUDING REMARKS

Here we have shown that there exists a potential mechanism for the abrupt extinction
of aerodynamically strained premixed flames with Lewis numbers less than onc. The
surpnising feature of this mechanism is that instead of the usual notion of a flame
extinguishing by becoming too cold, here flames can extinguish by becoming too hot.

The physics of this mechanism is surprisingly simple. When the Lewis number of 4
combustible mixture is less than one, aerodynamic straining of the flame will cause a rise
u lanise Wesaperature. Eventually the rate of teaction tausi fsll duc o the fact that the
concentration of active species is inversely proportional to the temperature (if the
pressure is fixed) and the fraction of sufficiently energetic collisions can be no greater
than one. This falling rcaction rate with increased blowing can extinguish the flame.

The question remains as to whether or not this extinction mechanism is accessible
to physical flaimes. Perhaps a simple expeniment can reveal the answer.

ACKNOWLEDGEMENT

We would bk ¢ to acknowledge that this work was supported by the Air Furce Office of Scicatilic Rewcarch.




EXTINCTION OF PREMINED 1TLAMES 4

RUEFERINCES

Buckmaster, J (o The guenching of 3 detlagration wive held in front of hiull body Seventeentl

Sympossian arernatmal } ol Combuspon, The Combustion fnstitute, p 833

Buckmanier, J.and Atikotaits, DL (19823 The prenused Name i 3 counterttaw Cennibrose Flame 47, 191,

Catlee. T P Kothar. A 1. and Miller, MUS. (19R4). The overall reaction concept n premined. fananar,
suidy-state flames. . dmnal temperatures and pressures. Combrs: 1 lame S8, 59

Kassy. D, R(1985) Muthematical madeling for planar. steady. subvonie combustion wases, Ann. Rev.
Fluid Mech. 7. 267.

Libhy, P Lian A and Wiltiams, F. A, (1983 Strained premixed laminar fames with pon-unity Lows
numbers. Combust. Sci. Tech. 34,49

Libby, P and Withams. F. A.(1982). Structure of faminar famelets in prenused Lurbulent amcs. Combust.
Flame 48, 287,

Libby, P.and Willms. F. A (19%2). Strained premixed flames under nonadiabatic conditions. Combust.
Sei. Tevh. M. ).

Libby, P und Wilhams. E. A. 11983). Strained premined fames with twa rection zones, Conthust. Sci.
Tech. 37,221

Mikolaitis, D. (1957). Strained taminar premixed flames. Comhust. Sct. Tech. 83, 23




APPENDIX B

Xerox copy of a manuscript that appeared in
the Springer-Verlag Lecture Notes in
Physics Series, v 299, entitled

"High Temperature Extinction of Premixed Flames"

by

David W. Mikolaitis

24



AN SN i i i, o Ao a et dini

HIGH TEMPERATURE EXTINCTION OF
PREMIXED FLAMES

David W. Mikolaitis
Department of Engineering Sciences
University of Florida
Gainesville, FL 32611

ABSTRACT

The far field of a stretched premixed flame with A-B=C
kinetics is studied. Each of the reaction rates are assumed to be
proportional to the mass fraction of the reactants and have a tempera-
ture dependence that is continuous, positive, and vanishes at both
infinite and zero absolute temperature. Arrhenius reaction rate
functions are examples that satisfy these requirements. Bounds are
uncovered for trn- .mount of blowing from behind the flame that plane
premixed flames can withstand for all Lewis numbers when the interme-
diate species are lighter than the deficient reactant. Wwhen the
intermediate products are heavier than the deficient reactant, bounds
on the blowing are found when the Lewis number of the deficient
reactant is less than one.

INTRODUCTION

Throughvthe analysis of the far field of adiabatic stretched
premixed flames with A-B kinetics, we have been able to show that
premixed flames with Lewis numbers less than one will be extinguished
given sufficiently strong blowing from behind {1)]. This is inferred
from the analysis in that the mass fraction of combustible becomes
negative in the far field if the opposed flow is above a maximum
allowable level. The activation energy asymptotic (AEA) analyses of
this case [2-7] do not show true extinction. What we mean by true
extinction is the failure of existence for a flame structure for
sufficiently strong opposed flow.

In the previous work {1] it was unclear as to what effect
dissociation would have on the results. Here we will investigate a
kinetic mechanism that incorporates dissociation. The simplest
possible reaction mechanism that would include dissociation is A.B.

—_—————a o
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It seems unlikely that the analysis of such a mecharism would revea!l
anything of interest in that the final equilibrium state would be
composed of major species only without any intermediates. A more
plausible wmodel is the A-B«.C mechanism where 3 represencs intermediate
products and the final equilibrium state is dominated by intermediate
and final products.

The plan of this paper is to first analyze the far field of
the stretched A-B-C flame so that the case without dissociation is
fully documented. Once the non-dissociating model is fully explored

we shall include the effects of dissociation.

MATHEMATICAL MODEL

The equations that model two-dimensional, low Mach number
combus :ion waves under the assumption of calorifically and thermally
perfect gases with constant transport properties are

d (pu)/ax+a (pv)/3y=0 ' (1)
3 (5uT) /3x+3 (5VT) /0y=97T+q, Y1, (T) +q,XE, (T) ~q,2¢, (T) (2)
3 (puY)/ax+3 (oY) /3y=(La) 1vzy-vt (T) (3)
3 (suX) /3x+3 (sVX) /2y=(Lp) “292X4¥L. (T) XL, (T)+22,(T) (4)
Z=1-X-Y (5)
pUIV/IX+pVIU/AY==-3p/3X+P (T2u+ (3 (3u/ax+3v/3y)/ax)/3) (6)
2UIV/3xX+pVIV/ay=-ap/ay+P (V3v+(a (du/ax+av/ay) /ay}/3) (7)
s=1/T. (8)

u and v are the non-dimensionalized x and y components of fluid
velocity, T is the non-dimensional temperature, » is the non-
dimesional density, p is the non-dimensional pressure, P is the
Prandtl number and X, Y and Z are the mass fractions of the intermed-
iate product, the reactant and the final product respectively. These
equations are continuity (1), energy balance (2), species balance (3~
5),'x and y womentum balance (6-7) and equation of state (8).

Proceeding as in (1), this system can be simplified for
piana fiazes in a non~uniform flow fieid. Tnhe resuiting equations
under the linit ot large heat release are

MAT/dx=d>T/dx +qlYt}(T)+q2xtz(T) -q, (1-X-¥) £, (T) (9)
HdY/dx-(l/Lm)d Y/dx -Y£, (T) ! (10)
HdX/dx-(x/Lg)d x/dx? +Yt L (T)=XE, (T) +(1=X=Y) £, (T) (11)
Pd? (Tam/dx) /dx -Hd(TdH/dx)/dx+T(dn/dx)2-0. (12)

M is the mass flux, pu. Without the limit of large heat release
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(Merame” Tremote reactants >> 1) the right hand side of equation (12;
could be a non-zero constant.
Appropriate boundary conditions are

T(-»)=X{=n)=0, Y(=e)=Y__, T(+<)nTy, Ml+a)=M,

X{(4<)=la(Te)/{E2(Tr)+E3(Tg)), Y(+=)=0 (13)
where T¢ is the temperature of the remote products, a quantity chat
must be found as part of the analysis. 1In addition, a boundary
condition is needed to force the balance in the remote reactants ©o be
one between conduction and convection without appreciable reaction.
Such a condition is

(d2T/dx2) /(M dT/dx) - 1 as x ~ =~=. (14)

THE REMOTE BURNED STATE

Since the system (9-13) is autonomous, we can transform the
problem into a phase space problem on a finite domain with independent
variable T through the definition

z = dT/dx. . . (15}
The resulting sYSéem of equations is
M = dz/dT + (qg1Yf1(T) + QaXfa(T) =~ q2(1-X-¥)£3(T))/z (16]
MdY/dT = (1/1,) d(zdY/dT)/dT - Y£y(T)/z (17)
MdX/dT = (1/Lg) d(zdX/dT)/dT +
(Y£1(T) = X£2(T) + (1-X-Y)£3(T))/2 (18)
?2d(2d (TzdM/dT) /dT) /dT - Mzd(TzdM/dT)/dT + Tz2(dM/dT)? = 0 (19)

and the boundary conditions at x=+e become

Z(Tg)=0, X(Te)=L3(Tf)/(£2(Te)+L3(Tg))=Xg,

Y(Tg)=0, M(Tg)=Mg. (20)

Near T=T¢ we can write

Z=¢C, Y= ¢y, X = Xg + £

T=Tge + ¢r, M= Mg + 4. (21)
The resulting system is

Mg = dg/dr + q1vf3(Tg) +

Q2(rA(Tg) + vL3(Tg) + £(L2(Te)+L3(Tg))) (22)
Mo ¢ de/dr = (1/Lp) ¢ d(¢ dw/dr)/dr - ¥£3(T¢) (23)
Mg ¢ dé/dr = (1/Lg) ¢ d(¢ d€/dr)/dr + $f3(Tg) -
i E(L2(Te)+E3(Te)) - #€3(Tg) - rA(Tr) (24)

and another equation for u that is of no consequence in the remainder
of the analysis. The function A is defined by

A(T) = (f3 dfo/dT - f3 df3/4dT)/(f3 + £3). (235)
The boundary conditions are
£(0)=¥ (0)=£(0)=0. (26)
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The singular point described by the system (22-24, 26) is
inherently non-linear, but fortunately it admits solutions of the for=x

vy = ar, £ = Dbr, ¢ = Cr. (27)
Substitution into (22-24) results in
c = [LpAMg = /(LaMg)? + 4LpAL)(Tf))/2 (23)

and the set of algebraic equations

a(qifi(Te)+qa£f3(Te)) + b (L2(Te)+13(Te))

a Mgc - c? - q2Aa (T¢) (29)

a(fy(Tg)-£3(Te)) + b(c2/Lp = Moc = £2(Tf) - £3(Tg)) = A(Tg)  (30)
that are trivially solved for a and b so that a,b and ¢ are now known
as functions of Mgy and T¢. There is another solution for ¢ with the
positive root in (28), but that solution is not consistent with the
fact that T approaches a constant as x goes to infinity.

THE REMOTE SINGULAR "POINT FOR NO DISSOCIATION

The solution fails to be physically realistic when a is
positive since that would correspond to a negative mass fraction for Y
near the singular point. The case where a=0 therefore defines a
critical condition.

The specification of the critical condition is very simple
in the case of no dissociation. When dissociation is neglected we
must take f3(T)=0 which implies that A=0. Setting a equal to zero and
eliminating b from (29=30) gives rise to

(Moc (1-Lp) -£1 (Tg)La) (Moc(La/Lp = 1)+La/Lp £1(Tg)=£2(Tg))=0.  (31)
Substituting (28) for ¢ gives the two critical conditions

Mo2_ = Laf1(Te)/(1-La) (32)
and

Hozc = (£2(Tg)-La/Lp f1(Tt))2/[LA(f2(Tf)‘f1(Tf))(LA/LB'l)]- (33)
Since the Lewis numbers and reaction rates are always positive,
condition (32) can only be attained when L < 1. 1In addition, if we
only consider the case where f£5(T) > f,(T) throughout the range of
possible final product temperatures T¢ so that product formation is a
faster reaction than the breakdown of the reactants (usually a good
assumption since the breakdown of the relatively stable reactants is
governed by a fairly high activation temperature mechanisa and the
formation of product from intermediates is typically through reactions
with small activation temperatures), then condition (33) caﬁ only
apply if Lp > Lg. This is a very common occurence since it requires,
roughly speaking, the mean molecular weight of the intermediate
species to be smaller than the molecular weight of the deficient
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raactant. The only potential mechanism that we can think of that does
not conform to this condition is lean hydrogen oxidation where the
deficient reactant has molecular weight 2 and the intermediate species
are H, CH and 0. It is likely that the mean molecular weight of the
intermediates will be greater than 2 in this case.

. Condition (32) is identical to the critical condition for
the A-B mechanism [1].

An example where Lg < Lp and Lp > 1 is given in Figure 1.

This situation occurs when the intermediate products are ligther than
the deficient reactant and the deficient reactant is heavier than the
bulk gas. 1In this case only .(33) defines a limiting condition. 1In
this and all subsiquent figures, the shaded regions are regions in the
parameter plane where the remote reactant mass flux is mathematically
negative and hence is of no physical significance.

Ty

Fig. 1: Critical remote mass flux versus flame temperature.
La=1.2, Lp=.8, g1=-1, g=2, fi=exp(-1/T)/T, fa=exp(-.1/T)/T

S\

Figure 2 shows a case when Lp < 1 and Lp < Lg. Since this
case only applies to the situation where the deficient reactant is
both lighter than the intermediate products and the bulk gas, it seems
likely that it may only apply to lean hydrogen/oxygen or lean hydro-
gen/oxygen/diluent mixtures. 1In this case only the condition (32)
applies.

Figure 3 shows a case where Lg < L, < 1. Such a situation
is likely for lean -ethane/a;r flames, for example, where the prin-
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ciple i1ntermediates aru lighter than the deticient reactant which in
turn is lighter than the bulk fluld. In this casae critical condi-
tiona are given by both (3z) and (3J).

In the firat twn cases i1t is clear that there are no physically
raalizable solutions if rhe remote mass flux in the burned gas
becomes too higqh. In the last case shown in Figure ), the mass
fraction of the ramote reacGants'is positive if conditions are such

that the
-8 7

T

Fig. 2: Critical remote mass flux versus flame temperature.

La=.5, Lp=.7, q1=-1, qz=2, f)=exp(-1/T)/T, fo=exp(-.1/T)/T
flame is above both curves. As a practical matter, however, such
solutions are probably not accessible since the starting conditions
in any real system would be in the lower domain and there is no way
to enter the upper domain in any continuous manner except through the
singlo point where the twc domains meet. The "solution" at the point
vhere the two solutions meet is found as limit of problems where the
_remote upstream reactant mass fraction goes to zero and hence is not
truly a flame. In fact, the solid curves are not part of the region
of physically realistic flame solutions because they correspond to
situations where the remote upstrean mass fraction of reactant is
tero and hence there is no flame. This fact is found cJhrough
numerical integration of the governing equations. '
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THE REMOTE SINGULAR POINYT WITH DIESSCIATIOHN

Wwhar, dissoclation is retuained, the critical Mg is fcund by
solving the algebralc eguatior
(CMo (1~Lp) =LALL(TE) =q2A (Tg)) {CMo(=1+La/Lp) + 1 (T¢) LA/Ly
' “f2(Ts)=f3(Tg)) = qua(Te) (L2(Te)+L3(T¢)) (34)
where C, a function of Mg, is given by (28). This is done most easily

by numerical root finding.
First we will consider the case where Lpg < L) and L) > 1,

such as a lean heavy hydrocarbon/air premixed flame, with weak
dissociation.

18
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Figure 3: Critical remote mass flux versus flame temperature.
Lpo=.8, Lp=.4, q1=-1, qz=2, fi=exp(-1/T)/T, fo=exp(-.1/T)/T

A typical parameter plot is shown in Figure 4. Comparing this plot to
the corresponding case without dissociation (Figure 1) we see that
‘dissociation decreases the maximum amount of blowing that the flade
can withstand.
tn the case vwhere Ly < Lg < 1, as shown in Figure S, the maximum
. possible amount of blowing is. increased through the action of dissoc-
iation. As mentioned earlier, such »n ardariny of the lawis numbers
i3 very infrequent in applications. One of the only possible physical
systems that might have such an ordering is lean hydrogewn/air prenixed
flames.
The case where Lp < Ly < 1 is shown in Figure 6. This manner ot
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lLewis numbecr ordering is characteristic of rich propana or heavier

nydrocarvonsalr mixtures. 1t is interesting to note that “here 13 roy

r a maximum amount ot blowing predicted by the snalysis ot tie

e | |

35
Ty
Figure 4: Critical mass flux versus flame temperaturs

Lp=1.2, Lpg=.8, qi=-1, d92%%, fimexp(-1/T)/T
f,mexp(=.1/T)/T, £3=.001 exp(-2/T)/T

. 7/ . 7277777

rigure St Critical mass flux versus flame temperature.
LA-.S' L“w?. q --1' qi‘:. t ‘.Xp("l/'r)/'r
fa=exp(=. }T)/T. j=exp -2/T)/T
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remote burned state. A gap opens up through which solution curves
may puss «nd the stronger the rate of dissociation, the vider the gap.
It {s probable,though ve hasten to add that we have not checked this
result tully, that iXs situation can arise whers near stoichiomsetric
mixtures will extinguish with sufficiently high blowing but rich
mixtures will not with some pivotal value of the remote mass fraction
of reactant, denoted by Yo, that seperates the tvo cases. This
phenomena is shown schematically in PFigure 7. As the rate of dissoc-
iation is increased, the gap should viden with a subsequent increase
in the pivotal value of the remote reactant mass flux. With a
sufficiently high rate of dissociation, it seems likely that the
pivotal value of the mass fraction of reactants should go to 1 wvith
further increases in the rate of dissociation resulting in no maximum

rate of blowing.

Figure 6: Critical mass flux versus flame temperature.
La=.8, Lp=.4, q1=-1, Q2=2, fj=exn(-1/T)/T
foa=axp(~.1/T)/T, £3=.001 exp(-2/T)/T

'CONCLUDING REMARKS

Here we have analyzed the rasponse of a plane premixed flame with
sequential kinetics to a non-uniform flow field. Two seperate cases
vere investigated:; one vhere the second step was irreversible and one
where it was revarsible. The inclusion of reversibilty in the aecond
step did not alter the qualitative flame response except in the case
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